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Introduction

The maximum velocity Ve of a running crack has

been shown by Mott to be related to the velocity Vg

of sound (1). Roberts and Wells computed the ratio

vc/vS to be 0.38 for a material having a value of

Poisson's ratio of 0.25(2). Reported values of Ve

and Vgr although relatively few in number, are in
reasonably good agreement with this prediction.
For highly-elastic materials, however, the agree-

ment is less satisfactory. Mason found vc/vS to be

about 0.3 for a vulcanized SBR elastomer and about 0.03
for a vulcanized natural rubber (3). The surprisingly
low value for natural rubber was attributed to highly
anisotropic elastic behavior at high strains, rendering
invalid the theoretical treatments of Mott, and Roberts
and Wells, which assumed small-strain isotropic
behavior. Recent studies by Stevenson and Thomas of
the velocities of crack propagation in bursting rubber

balloons led to estimates of the ratio vc/vs of

about 3.2 for natural rubber, about two ordersof magni-
tude greater than Mason's result (4).

No other studies of high-speed crack velocities in
rubber are known to the present authors. Measurements
have therefore been carried out for carbon-black-filled

and unfilled natural rubber sheets, held under various
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. states of strain. They are reported here and compared

with recent measurements of the velocity vy of sound
in stretched rubber (5).

Experimental details

(i) Materials used

Rubber sheets were prepared using the mix formu-
lations and vulcanization conditions given in the
Appendix. Test strips were cut from the sheets about
250 mm long, 20 mm wide and 0.5 mm thick. Some samples
of similar dimensions were prepared in a special mold,
to give thickened edges along the 250 mm sides for ease
of clamping. A grid was painted on one surface of the
test strips to allow strains to be measured.
(ii) Biaxial straining

The test strip was first stretched along its
length, denoted the x direction, to the required
strain e,. Two parallel rigid clamps, 150 mm long,
were th;; applied to the strip edges so that a section
of the strip, about 150 mm long and 10 mm wide, was
secured between them in the stretched state. When
these clamps were fastened, the original stretching
force was released. The specimen then remained
stretched in its length direction (except for small

regions at the ends), because the clamps along each

U




side prevented it from returning to the unstrained
state.

The clamps were then attached to a loading device,
arranged to pull them apart in the y direction and
thus impose on the rubber strip an additional strain

ey in a direction perpendicular to the first. The

strain ?X_was always made greater than the strain

e, So that a crack initiated in the center of the
;;rip would run in the long x-direction rather then
in the short y-direction and would therefore be more
easily studied.

Measurements were made of the amount of work
required to stretch the rubber sheet in the y
-direction to the strain ey- On dividing by the
volume of rubber, this gave the strain energy density
W for a particular combination of strains egr &y
that would be released by a crack running in the x
-direction. (It is assumed that the original work of
imposing the strain e, is not released by such a
crack). The amount ;;-energy released by such a crack,
per unit area of material torn through, is then given
by

T = Who (1)
where h  denotes the strip width in the y direction

between the clamps, when the force in this direction is




zero (6). The tear energy T has been shown to be the
parameter governing slow crack growth in elastomeric
materials under varied loading conditions (7-10).
Cracks do not propagate unless T exceeds a well-
defined critical value. Above this value, the rate of
propagation appears to depend solely upon the magnitude
of T. The same concept has been applied to other
materials. T is termed the strain energy release
rate and its critical value, sometimes denoted ga, is
termed the fracture energy of the material. We examine
below whether the magnitude of T governs the velocity
of high-speed cracks.
(iii)Measuring the crack velocity

A crack was initiated in the center of a
biaxially-stretched strip by piercing it with a needle
point that had been filed to resemble a spearhead in
order to help guide the crack in the x-direction. As
the crack grew it permitted a light beam from a laser
source to illuminate a photo-sensitive trigger and thus
to set off a series of three flashtubes, Figure 1, giv~
ing a triple exposure of the propagating crack on a
photographic film. The same arrangement was employed
previously for determining velocities of free retrac-
tion of stretched rubber strips, and has been described

more fully in that connection (5).




A representative photograph is shown in Figure 2.
From the distance moved by the crack tip between
successive exposures, and the measured time interval
between flashes, mean values of the velocity_zg of
crack propagation were determined. No indication was
found either of acceleration or deceleration of the
crack over the distances studied, about 5 cm of growth
on each side. This conclusion is supported by the

observations of Mason (3) and Stevenson and Thomas (4).

Results and discussion

(i) The relation between crack velocity and tear
energy
As will be discussed in more detail later, measur-
ed crack velocities were found to depend strongly upon
the levels of strain e, and ey If ey was not
sufficiently large, then thé—;rack dEE not propagate at
all. Above the critical value of ey, the crack grew
at rates between about 5 and 100 ﬁ;;, depending upon
the strains imposed. The first question to consider,
then, is whether the crack velocity depends solely upon
the available energy T, or whether it is a function
of the local state of strain only. These parameters
can be adjusted separately with the specimens used in
the present experiments. By varying the width hy
of the strip between the clamps, the magnitude of E_




can be changed even when the strain levels and the strain

energy density W are held constant, equation 1.
Measurements were made of the crack velocity Ve

in strips of unfilled natural rubber of various wigghs

ho ranging between 2 and 15 mm, when the strips were

stretched to e, = 1 and e_ = 3. At these strain
levels, W = 3 MJ/m3. The results are shown in

Figure 3. Until ho = 3 mm, the crack velocity was
effectively zero. From equation 1, the critical tear
energy T for a crack to propagate at all is thus
about 9 kJ/mz. Measurements at other strain levels
confirmed the validity of this tear energy criterion
for any crack growth to occur. Above this energy

level, as shown in Figure 3, the crack velocity in-

creased rapidly with incresing width EQ of the

strip, to reach an upper value of about 53 m/s. It then
became quite independent of the strip width, i.e., of
the tear energy T. Thus, it .nay be concluded that
whereas a tear energy criterion governs the onset of
fracture and probably governs the rate of slow-speed
cracks, the maximum crack velocity is independent of
the available energy for tearing. It depends strongly
upon the imposed strains, however, as discussed below.
(ii) Effect of imposad strains upon the maximum crack

velocity




Measured crack velocities-zg are plotted as a
function of the imposed strains in Figures 4 and 5.
For the unfilled material A’_Xc increases with
increasing strain e_. Moreover, at any value of e

g ey ' y Sy

Ve increses markedly with ey- Apparently the

material tears much more rapidly when it is held
somewhat stretched in the direction of the running
crack. A pronounced reduction in tear strength for a
sample held stretched in the tear direction has been
noted previously (11),

Similar behavior was shown by the carbon-black-
filled material B, Figure 5. However, relatively slow
crack growth was observed for this material over a
range of strains ey from about 1.2 to 2.0, when the

strain e, was small or zero. Over this range of
strains—Zhe crack velocity was anomalously low, only
about 3 m/s. On examining the torn surfaces they were
relatively smooth and structureless at a magnification
of 300x, for all strain conditions, whether the crack
had grown at about 3 m/s or at a much higher velocity.
The anomalously-low rates of tearing at low strains can-
not therefore be ascribed to a change in the geometry

of tearing and must reflect an intrinsic resistance to

fracture at high speeds, presumably from an energy-

dissipation mechanism in material B that is not present




in material A. One such process would be the
detachment of rubber from filler particles under the
high stresses set up at the crack tip.
(iii)Comparison with Mott's theory

As shown in Figures 4 and 5 the crack velocity
increased rapidly with increasing strain for both the
unfilled and carbon-black-filled materials, reaching
values of over 100 m/s at the highest strain levels
employed. 1In experiments with a bursting balloon,

where the strain ey (=ex) ranged from 1.3 to 4.0

strain units, Stevenson and Thomas reported even higher

velocities V. of 130 to 285 m/s {(4). These values

are now com;;red with the predictions of Mott's theory.
By including kinetic energy in the relation for

energy changes during propagation of a crack, Mott

showed that the maximum crack velocity should be

proportional to the velocity v_ of a stress pulse in

s
the material (1). Roberts and Wells determined the
constant of proportionality to be a rather complicated
function of Poisson's ratio, taking the approximate
value of 0.38 when Poisson's ratio is 0.25 (2). As
described elsewhere, this constant becomes 0.3 when

Poisson's ratio is taken as 0.5, the appropriate value

for virtually incompressible materials like rubber (6).
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Now the velocity v of a stress pulse in rubber
is strongly dependent ;;on the state of strain (5).
Some representative values are given in Table 1.
Values of the maximum crack velocity Ve calculated
from measured values of vy on the ass:;ption that
Mott's relation holds fo;_stretched rubber, are given
in Table 1. They are also shown in Figures 4 and 5 as
full curves, for comparison with the experimentally-
determined values of Ve They are seen to be in
reasonably good agreé;;nt with the highest crack veloci-

ties measured, i.e., those observed when the strains

ey and eY were both relatively large. Moreover,

the measured values increase rapidly with the imposed
strain ey in good agreement with the predicted
relatio;;.

Thus, for both unfilled and carbon-black-filled
samples of natural rubber, the maximum observed
velocities of crack propagation are in good agreement
with the relation

v, = 0.3 v (2)
when the velocity Vg is determined at an appropriate

state of strain. Because Vg is strongly dependent
upon the state of strain, the maximum crack velocity is
predicted to increase from about 20 m/s to about 200

m/s for the unfilled material A over the range of
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strains e, = 1 to e_ = 4.5, and from about 90 m/s
Yy -y
to about 220 m/s for the carbon-black-filled material B

over the range of strains e, = 1l to e, = 2. The

measured values are in reasonably good agreement with
these predictions.

It should be noted that no allowance has been made
for possible changes in the velocity Vg when a strain

ey is imposed perpendicular to the direction of

travel of the stress pulse. The predicted relations

are based solely on values of A determined for

strips in a state of simple extension, i.e., with e,

= eyJ5 . A large effact of strains e  imposed in

a perpendicular direction is not expected for the

velocities vs,-however.
(iv) Comparison with other work

Crack tip velocities reported by Stevenson and
Thomas (4) are given in Table 1. They are seen to be
in reasonable agreement with values calculated for a
carbon-black-filled natural rubber material B, using
the measured velocity of sound at the particular
imposed strain. As Stevenson and Thomas pointed out,
the velocity of sound at small strains is clearly far
too low to account for their observed crack velocities
and those reported here. They were not aware that much

higher sound velocities are encountered at moderately

high strains, and attributed the high crack velocities
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to special conditions set up at the crack tip itself.
This assumption does not now seem to be necessary
because the observed crack velocities can be accounted
for solely in terms of the measured strain dependence
of the velocity of a stress pulse in rubber.
Conclusions

The velocity of crack propagation in biaxially-

strained sheets of natural rubber is an increasing
e

function of the biaxial strains ey and EX' Below a
critical value of the cleavage strain ey, which

depends on the strip width, no crack growth occurred.
These critical conditions correspond to an energy
requirement for fracture of about 5-10 kJ/m2 for an
unfilled natural rubber vulcanizate A and about

15-20 J/m2 for a carbon-black~filled natural rubber
vulcanizate B.

For the filled material, cracks grew at relatively
low velocities, about 3 m/s for a range of imposed
strains above the critical level and then the velocity
increased rapidly at higher strains. 1In contrast,
cracks grew rapidly in the unfilled material once the
cleavage strain was high enough to permit tearing to
occur at all. The velocities of high-speed cracks were
found to be independent of the available energy for

fracture and depended solely upon the state of strain.
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Values of maximum velocity v, were calculated
from measured values of the velocity Vg of sound at
various imposed strains. Agreement with the observed
maximum crack velocities was surprisingly good, both in
general magnitude and in the strong dependence upon the

imposed strain, for both materials examined.
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Appendix
The mix formulations are given below in parts by weight.
Unfilled natural rubber (A):
Natural rubber (SMR-5L), 100; zinc oxide, 5;
stearic acid, 2; phenyl-2-naphthylamine, 1;
N-cyclohexyl-2-benzothiazy! sulfenamide, 0.6;

sulfyr, 2.5.

Carbon-black-filled natural rubber (B):
As for A, with the addition of N330 carbon black

(Vulcan 3, Cabot Corporation), 50.

The compounds were vulcanized in the form of thin sheets by

heating them in a press for 24 min at 150°C.
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Table 1. Representative values of the velocity Vg of a

stress pulse, taken from reference (5), and crack

velocities Ve

a—

e v v _(calc. from v_ from [reference (4)]
Y s € equation 2) £
(m/s) (m/s) (m/s)

Unfilled material A

1.3 75 22.5 133
2.0 90 27 -—-
2.7 180 57 230
3.0 250 75 -—-
4.0 400 120 285

Carbon-black-filled material B

1.3 380 123 133
2.0 720 216 ~--
2.7 >900 270 230
3.0 -— - ---
4.0 —- -—- 285
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Figure Captions

Figure 1.

Figure 2,

Figure 3,

Figure 4.

Figure 5.

Method of measuring the velocity of a crack in a
biaxially-strained rubber strip.
Triple-exposure photograph of a growing crack in material

B. e, = 0.4, fx,= 2.3.

Crack velocity Ve in strips of varying unstrained width

EQ: Material A; e, = 1, ey = 3,

Crack velocity Ve in biaxially-strained sheets of

material A. The vertical dotted line represents the
threshold strain below which the crack did not grow at
all. The full curve represents the predictions of

Mott's theory: v, = 0.3 Vg using values of Ve

appropriate to the strain ey.

Crack velocity Ve in biaxially-strained sheets of

material B. _;he vertical dotted line represents the
threshold strain below which the crack d4id not grow at
all. The full curve represents the predictions of
Mott's theory: V. = 0.3vs, using values of Ve

appropriate to the strain ey.
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